9,613 research outputs found

    Unevenness of Loop Location in Complex Networks

    Full text link
    The loop structure plays an important role in many aspects of complex networks and attracts much attention. Among the previous works, Bianconi et al find that real networks often have fewer short loops as compared to random models. In this paper, we focus on the uneven location of loops which makes some parts of the network rich while some other parts sparse in loops. We propose a node removing process to analyze the unevenness and find rich loop cores can exist in many real networks such as neural networks and food web networks. Finally, an index is presented to quantify the unevenness of loop location in complex networks.Comment: 7 pages, 6 figure

    Chance Constrained Mixed Integer Program: Bilinear and Linear Formulations, and Benders Decomposition

    Full text link
    In this paper, we study chance constrained mixed integer program with consideration of recourse decisions and their incurred cost, developed on a finite discrete scenario set. Through studying a non-traditional bilinear mixed integer formulation, we derive its linear counterparts and show that they could be stronger than existing linear formulations. We also develop a variant of Jensen's inequality that extends the one for stochastic program. To solve this challenging problem, we present a variant of Benders decomposition method in bilinear form, which actually provides an easy-to-use algorithm framework for further improvements, along with a few enhancement strategies based on structural properties or Jensen's inequality. Computational study shows that the presented Benders decomposition method, jointly with appropriate enhancement techniques, outperforms a commercial solver by an order of magnitude on solving chance constrained program or detecting its infeasibility

    Enhancing network robustness for malicious attacks

    Get PDF
    In a recent work [Proc. Natl. Acad. Sci. USA 108, 3838 (2011)], the authors proposed a simple measure for network robustness under malicious attacks on nodes. With a greedy algorithm, they found the optimal structure with respect to this quantity is an onion structure in which high-degree nodes form a core surrounded by rings of nodes with decreasing degree. However, in real networks the failure can also occur in links such as dysfunctional power cables and blocked airlines. Accordingly, complementary to the node-robustness measurement (RnR_{n}), we propose a link-robustness index (RlR_{l}). We show that solely enhancing RnR_{n} cannot guarantee the improvement of RlR_{l}. Moreover, the structure of RlR_{l}-optimized network is found to be entirely different from that of onion network. In order to design robust networks resistant to more realistic attack condition, we propose a hybrid greedy algorithm which takes both the RnR_{n} and RlR_{l} into account. We validate the robustness of our generated networks against malicious attacks mixed with both nodes and links failure. Finally, some economical constraints for swapping the links in real networks are considered and significant improvement in both aspects of robustness are still achieved.Comment: 6 pages, 6 figure

    Temporal effects in trend prediction: identifying the most popular nodes in the future

    Full text link
    Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes' recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail

    Inferring network topology via the propagation process

    Get PDF
    Inferring the network topology from the dynamics is a fundamental problem, with wide applications in geology, biology, and even counter-terrorism. Based on the propagation process, we present a simple method to uncover the network topology. A numerical simulation on artificial networks shows that our method enjoys a high accuracy in inferring the network topology. We find that the infection rate in the propagation process significantly influences the accuracy, and that each network corresponds to an optimal infection rate. Moreover, the method generally works better in large networks. These finding are confirmed in both real social and nonsocial networks. Finally, the method is extended to directed networks, and a similarity measure specific for directed networks is designed
    • …
    corecore